

Cross-linguistic perception of Thai tones is shaped by the functional prominence of lexically-contrastive pitch in L1

2 🖻

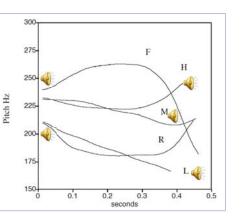
Vance Schaefer and Isabelle Darcy Department of Second Language Studies Indiana University idarcy@indiana.edu, vkschaef@indiana.edu

New Sounds 2013 Montreal, Quebec, Canada Concordia University May 17-19, 2013

Tone

 Tone languages use variations of voice t = "pitch", or "F₀" to distinguish heighords.

Patterns: LEVEL or CONTOUR


สัทวิทยาของภาษาที่สอง

1 ໑

Thai tones

nâ: <i>face</i> nă: <i>thick</i>	falling rising
ná: <i>aunt</i>	high leve
na: rice field	mid level
nà: custard apple	low level

2 contour tones 3 level tones

Source: Contour shapes of Thai tones in citation form. Representative examples from one speaker. From Zsiga & Nitisaroj, 2007, p. 347

ส้ทวิทยาของภาษาทิสอง

Tone perception by native speakers

Native speakers perceive tones as linguistic

ategories

- C V an Lancker & Fromkin, 1973; Wang, Jongman & Sereno, 2001
- Tonal information also constrains lexical

Lee, 2007

access

สัทวิทยาของภาษาที่สอง

Tone perception by non-native speakers

Speakers of a tonal language display high acy in non-native tone perception accut/pland & Guion, 2004

Speakers of non-tonal languages have less

to tonal contrasts than people with

sensitivity tonal experience

pr Chang & Best, 2004, for French listeners; Gandour & Harshman, Hallé,78; Wang, Behne, Jongman & Sereno, 2004, among others

สัทวิทยาของภาษาที่สอง

4 🕑

Do all non-tonal language speakers perform equally in non-native tone perception?

There are differences AMONG non-tonal language ers in non-native tone perception

speaks., L1 pitch accent speakers perform at comparable acy levels to L1 tone language speakers t al., 1996; So, 2006

• Languages differ in the extent and function to y use F_0 variations:

which_the languages use pitch for intonation at the level of phrases while only some use pitch for distinctions at the word level

สัทวิทยาของภาษาที่สอง

5 **ď**

Lexically-contrastive pitch usage

Functional scale of pitch contrasts

	Most systematically linguistic		→ Least systematically linguistic	
Pitch contrasts	Phonological tone	Lexical type	Syntactic/attitudinal/emotional	
	Thai	Japanese	Korean	
	Chinese	English)	
Domain	Segment or syllable	Word/phrase	Phrase/sentence	

Adapted from Van Lancker, 1980: 210

Pitch prominence typology and predictions for tone perception accuracy

Language	Domain	Prominence	
Tone (Mandarin)	Lexical, syllable	Maximal	
Pitch-accent (Japanese)	Lexical, word	High-intermediate (pitch is exclusive)	
Word stress (English)	Lexical, word	Low-intermediate (pitch is non-exclusive)	
Intonation-only (Korean)	Non lexical	Low	

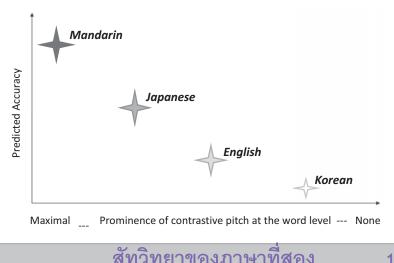
สัทวิทยาของภาษาที่สอง

8 ର୍ଜ୍ଦ

Pitch Prominence Hypothesis

- Similar predictions are found in previous studies
 - Feature Hypothesis McAllister, Flege, & Piske, 2002: L2 perception of Swedish vowel length contrasts by native speakers of Estonian, English, and Spanish
 - Linguistic relevance of a dimension in L1 shapes the brain response to L2 contrasts (with MMN data) Nenonen, Shestakova, Huotilainen, & Näätänen, 2003
- We predict accuracy of cross-language tone perception based on prominence of pitch in the L1

สัทวิทยาของภาษาที่สอง


9 **๙**

Pitch prominence typology and predictions for tone perception accuracy

Language	Domain	Predicted Sensitivity/ Accuracy in tone perception	
Tone (Mandarin)	Lexical, syllable	Maximal	
Pitch-accent (Japanese)	Lexical, word	High-intermediate (pitch is exclusive)	
Word stress (English)	Lexical, word	Low-intermediate (pitch is non-exclusive)	
Intonation-only (Korean)	Non lexical	Low	

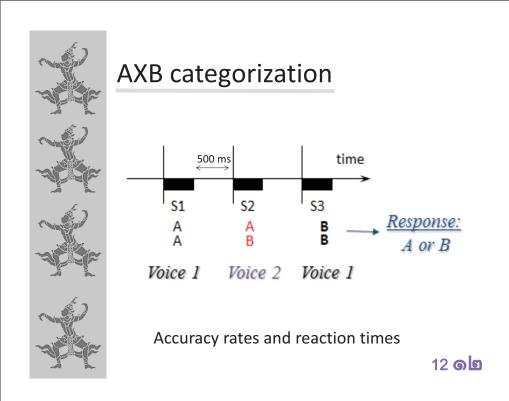
สัทวิทยาของภาษาที่สอง

Prominence predicts accuracy



10 **๑୦**

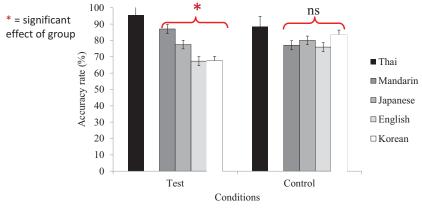
8 ക



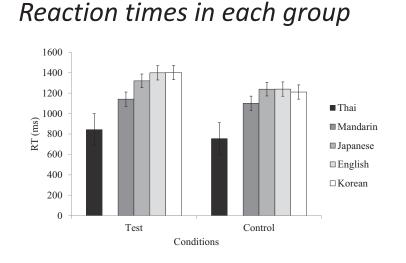
Participants

Graduate studentsGenerally involved in language studies/linguisticsStudents in the US

11 **໑໑**

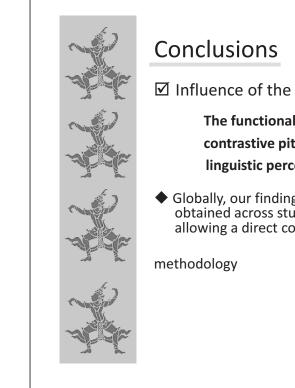

Experimental conditions

- Monosyllabic words & nonwords presented in triplets (48 "test", 48 "control")
 All test words were open syllables
- 3 test conditions:


Test Conditions			Control Condition
Direction (n=12)	Height (n=12)	Mixed (n=24)	Control (n=48)
rising-falling	low-mid	low-rising low-falling	
rising-falling	low-high	mid-rising mid-falling	- vowel
rising-falling	mid-high	high-rising high-falling	

13 **໑ຓ**

Accuracy rates in each group



- Significant interaction between "group" and "condition": F(3, 37) = 11.3, p < .001</p>
- Effect of group is significant for test condition only : F(3, 67.3) = 11.3, p < .001</p>
- Predicted hierarchy of accuracy: Mandarin (M = 87% correct), Japanese (M = 77% correct), English and Korean (M = 67% correct for both).

• Interaction was not significant: F(3, 37) = 2.4, p = .08

15 **o**ď

☑ Influence of the L1 phonological system

The functional prominence of lexicallycontrastive pitch in L1 shapes crosslinguistic perception of Thai tones

• Globally, our findings confirm previous results obtained across studies and add strength by allowing a direct comparison with the same

16 **()**

Discussion: Overall performance

- Equal accuracy between English and Korean in tone discrimination was not predicted. Why?
- Are English "less accurate than expected"?
 - F_o is rarely used *alone* to distinguish words in English, perhaps creating the same performance as if F_0 was not used at all to signal lexical contrast (English = Korean)
 - Stress constrains lexical access only to a limited extent in English (Cooper, Cutler & Wales, 2002)
 - In contrast, when $\rm F_0$ can be used alone to distinguish words, as in Japanese, performance is higher
- Are Koreans "more accurate than expected"?
- Influence of L2 English on Koreans?
- Exposure to a pitch-accent Kyungsang dialect?

17 ബെ

っしつて

Individual Korean Dialectal Differences

경상도 어

Kyungsang Korean

シンナウ

경상도 어

Dialectal boundaries
 Lee & Ramsey, 2000

Lexical pitch in Korean

- Kyungsang listeners show categorical perception of pitch accent patterns Kim & de Jong, 2007; Kim, 2011
- Limited advantage in the naïve perception of Japanese pitch accent Sukegawa, Choi, Maekawa & Sato, 1995
- Emergence of lexical pitch in standard
 Korean among younger speakers
 Silva, 2006

19 **໑๙**

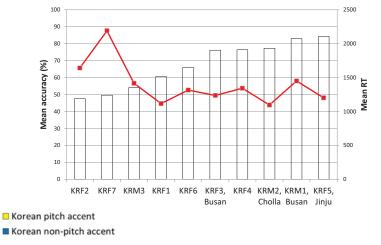
Pitch accent in Korean Kyungsang dialect

Minimal pairs of 3 lexical accent patterns

- a. **[moi]**: HL vs. LH 'feed', 'conspiracy'
- b. [more]: HL vs. HH 'sand', 'the day after tomorrow'
- c. $[ya\eta mo]$: LH vs. HH 'wool', 'adoptive mother'

From Kim, 2011; Kim & de Jong, 2007

Predictions

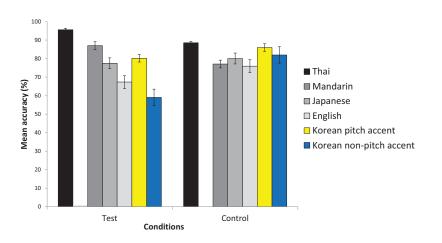

경상도 어

경상도 어

- If the L1 phonological system determines accuracy, Kyungsang Korean dialect speakers should outperform non-Kyungsang speakers
- We examine individual performance for the Korean group


20 **២೦**

Korean performance on combined test items


22 **១១**

Korean performance on control items

23 **២**៣

Accuracy rates for each Korean subgroup

- We conclude that the Korean group most likely performed "More accurately than expected" because of the dialect differences within that group 24 50 c

Take home message

- ☑ Influence of the L1 phonological system in a narrow sense, i.e. L1 dialect
- The functional prominence of lexically-contrastive pitch in L1 shapes cross-linguistic perception
- Further support for the Feature Hypothesis (McAllister et al., 2002): Accuracy of perception of non-native phonological dimensions is shaped by the prominence of that dimension in the L1 phonological system
- For pitch: Exclusivity and domain size matter to determine prominence

Acknowledgements

Kathleen Bardovi-Harlig Laurent Dekvdtspotter Ken De Jong Stephanie Dickinson Mariko Kondo Keiko Kurivama Philip LeSourd Charles Lin Öner Özcelik **Rex Sprouse David Stringer** Second Language Psycholinguistics Lab members SLRF audience LabPhon audience SLS seminar classmates

References

- Burnham, D., Francis, E., Webster, D., Luksaneeyanawin, S., Attapaiboon, C., Lacerda, F., & Keller, P. (1996). Perception of lexical tone across languages: Evidence for a linguistic mode of processing. In H. T. Bunnell & W. Idsardi (Eds.), Proceedings of the Fourth International Conference on Spoken Language Processing (Vol. 1, pp. 2514–2517). Wilmington, DE: Applied Science and Engineering Laboratories.
- Cooper, N., Cutler, A., & Wales, R. (2002). Constraints of lexical stress on lexical access in English: Evidence from native and non-native listeners. *Language and Speech*, 45(3), 207-228.
- Gandour, J., & Harshman, R. (1978). Crosslanguage differences in tone perception: a multidimensional scaling investigation. *Language and Speech*, *21*, 1–33.
- Hallé, P. A., Chang, Y-C. & Best, C.T. (2004). Identification and discrimination of Mandarin Chinese tones by Mandarin Chinese vs French listeners. *Journal of Phonetics, 32*, 395-421.
- Kim, J.-S. (2011). Perception of Lexical Pitch Accent by Kyungsang and Cholla Korean Listeners. In W.-S. Lee, & E. Zee (Eds.), Proceedings of the 17th International Congress of Phonetic Sciences 2011 [ICPhS XVII] (pp. 1070-1073). Hong Kong: Department of Chinese, Translation and Linguistics, City University of Hong Kong.

26

References

- Kim, J.-S., & de Jong, K.J. (2007). Perception and Production in the Pitch Accent System of Korean. In J. Trouvain and W. J. Barry (Eds.), Proceedings of the 16th International Congress of Phonetic Sciences 2007 [ICPhS XVI] (pp. 1273 – 1277). Dudweiler: Pirrot.
- Lee, I., & Ramsey, S. R. (2000). *The Korean Language*. Albany, New York: State University of New York Press.
- Lee, C-Y. (2007). Does Horse Activate Mother? Processing Lexical Tone in Form Priming. *Language and Speech*, *50*(1), 101-123.
- McAllister, R., Flege, J. E., & Piske, T. (2002). The influence of L1 on the acquisition of Swedish quantity by native speakers of Spanish, English and Estonian. *Journal of Phonetics, 30*, 229-258.
- Nenonen, S., Shestakova, A., Huotilainen, M., & Naatanen, R. (2003). Linguistic relevance of duration within the native language determines the accuracy of speech-sound duration processing. *Cognitive Brain Research*, 16(3), 492-495.
- Silva, D. J. (2006). Acoustic evidence for the emergence of tonal contrast in contemporary Korean. *Phonology, 23,* 287-308.
- So, C. K. (2006). Perception of non-native tonal contrasts: Effects of native phonological and phonetic influences. In P. Warren, & C. I. Watson (Eds.), *Proceedings of the 11th Australian International Conference on Speech Science & Technology*. Auckland, New Zealand: University of Auckland.

References

- Sukegawa, Y., Choi, H., Maekawa, K., & Sato, S. (1995). Perception of pitch accent by Korean learners of Japanese and its implications. *Denshi Joho Tsushin Gakkai gijutsu kenkyu hokoku: shingaku giho, 95*(41)/19950518, 61-66.
- Van Lancker, D. (1980). Cerebral lateralization of pitch cues in the linguistic signal. *Papers in Linguistics: International Journal of Human Communication, 13,* 201–277.
- Van Lancker, D., & Fromkin, V. A. (1973). Hemispheric specialization for pitch and "tone": Evidence from Thai. *Journal of Phonetics, 1,* 101–109.
- Wang, Y., Behne, D. M., Jongman, A. & Sereno, J. A. (2004). The role of linguistic experience in the hemispheric processing of lexical tone. *Applied Linguistics, 25*, 449-466.
- Wang, Y., Jongman, A., & Sereno, J. A. (2001). Dichotic perception of Mandarin tones by Chinese and American listeners. *Brain and Language*, *78*, 332–348.
- Wayland, R. P., & Guion, S. G. (2004). Training English and Chinese listeners to perceive Thai tones: A preliminary report. *Language Learning, 54*, 681-712.
- Zsiga, E., & Nitisaroj, R. (2007). Tone features, tone perception, and peak alignment in Thai. *Language and Speech, 50* (3), 343-383.