ATTENTION CONTROL IN STUDY ABROAD CONTEXT: LONGITUDINAL DATA FROM L2 LEARNERS OF SPANISH

LORENZO GARCÍA-AMAYA UNIVERSITY OF MICHIGAN

> **ISABELLE DARCY** INDIANA UNIVERSITY

> AAAL 2013, DALLAS, TX

RESEARCH GOALS

- 1. Discuss **fluency gains** in an overseas immersion context (OIM) in Spain:
 - Temporal variables
 - Hesitation phenomena

- 2. Advance our knowledge of correlations of fluency and **attention control**
 - Individual differences in second language acquisition

PREVIOUS RESEARCH

SECOND LANGUAGE & COGNITIVE ABILITIES

- Cognitive abilities:
 - Working memory (Atkins & Baddeley, 1998; Papagno & Vallar, 1995)
 - Processing speed (Salthouse, 1996)
 - Lexical retrieval (Segalowitz, 1997)
 - Attention control (Guion & Pedersen, 2007; Segalowitz, 1997)

→Not sufficiently understood: how these factors relate to L2 *fluency* development

OUR L2 FLUENCY MEASURES

• What is fluency?

- 'Fluency' is understood as a primarily temporal phenomenon: not a vague notion of proficiency, but the way speech is processed and articulated in real time (Schmidt, 1992)
- Speed
 - Rate of speech (Syllables per second)
 - Variety of measures (Lennon, 1990, Towel et al., 1997, Freed, 1995, Freed et al., 2004, Segalowitz & Freed, 2004, Mora & Vals-Ferrer, 2012, García-Amaya, 2008, 2009, 2010, 2012)

Hesitations

- Filled pauses (Seconds between filled pauses)
 - Watanabe et al., 2004, 2005, 2008, Segalowitz & Freed, 2004; García-Amaya, 2010, 2012
- Silent pauses (Seconds between silent pauses)
 - Kang, 2010, D'Amico, 2012

INDIVIDUAL DIFFERENCES AND L2 FLUENCY

- *L2 cognitive fluency* is related to utterance fluency (de Jong et al. 2012)
 - Vocabulary knowledge, retrieval processing speed
- **Phonological memory** is related to L2 oral fluency gains in L2 Spanish (O'Brien et al., 2007)
 - Serial nonword recognition
- More efficient attention control is also correlated with greater L2 fluency (Mora & Gilabert, 2012)
 - Trail Making Task
 - But weak correlations
- **Cognitive processing abilities** are related to fluency gains in SA (study abroad) & AH (at home) contexts (Segalowitz & Freed, 2004)
 - Lexical access, attention control

RESEARCH DESIGN

PARTICIPANTS

- 27 learners of Spanish that participated in an overseas immersion program (OIM) in León, Spain through a large Midwestern institution
 - Highly motivated learners (between junior and senior year of high school)
 - Previous Spanish coursework at the high school level
 - While participating in the current study they did the following:
 - 6 weeks abroad in Spain and daily contact with native speakers
 - **Daily classes** of **Spanish** pronunciation, culture, grammar, literature and conversation
 - Pledge to a language commitment (also known as the "No-English Rule")
- **29 learners** of Spanish that participated in a traditional **at home (AH)** context at another large Midwestern institution
 - Grammar and composition
 - **Previous Spanish coursework** at the high school and college levels

DEMOGRAPHICS

GROUP	SEX	MEAN AGE	MEAN YEARS OF SPANISH INSTRUCTION	
АН	F=24 M=5	20.76	5.72	
OIM	F=20 M=7	17.04	4.41	

TIME LINE

	TIME 1	TIME 2	TIME 3	
AH GROUP	AUGUST 31	OCTOBER 14	NOVEMBER 30	
OIM GROUP	JUNE 9	JUNE 29	JULY 19	

ORAL PRODUCTION TASK

 At each data collection time participants watched two videos from the Simons' Cat collection (by Simon Tofield) and were asked to start retelling them as soon they finished without any preplanning time.

GROUP RESULTS

ORGANIZATION OF RESULTS

I. LANGUAGE CONTACT PROFILE (SPEAKING)

II. PROFICIENCY TEST

III. FLUENCY ANALYSIS

- a. RATE OF SPEECH
- **b**. NUMBER OF SECONDS BETWEEN FILLED PAUSES
- c. NUMBER OF SECONDS BETWEEN SILENT PAUSES

IV. ATTENTION CONTROL TASK

ORGANIZATION OF RESULTS OIM & AH

I. LANGUAGE CONTACT PROFILE (SPEAKING)

II. PROFICIENCY TEST

OIM

III. FLUENCY ANALYSIS

a. RATE OF SPEECH

- **b**. NUMBER OF SECONDS BETWEEN FILLED PAUSES
- c. NUMBER OF SECONDS BETWEEN SILENT PAUSES

IV. ATTENTION CONTROL TASK

LANGUAGE CONTACT PROFILE

SELF-REPORTED TIME SPEAKING SPANISH

SELF-REPORTED TIME SPEAKING SPANISH

PROFICIENCY TEST

FLUENCY (OIM ONLY)

Development over 6 weeks in Spain

TOTAL SPOKEN TIME

The results of the fluency analyses represent the averages obtained for a total of 6 video retells by 27 participants (162 videos)

		VIC			
	-	1	2	TOTAL	
	1	60 min.	35 min.	94 min.	
	2	51 min.	67 min.	117 min.	
	3	49 min.	82 min.	131 min.	

6 HOURS OF TRANSCRIBED RECORDINGS

OIM GROUP, VIDEO RETELL TASK

ATTENTION CONTROL

Design of a new task to measure attention control

ATTENTION CONTROL

- Inhibition of L1 and monitoring speech are component of fluent L2 speech
- Attention control is important because it is involved in monitoring speech and selecting input for subsequent processing, and hence, can be related to phonological and fluency development in L2
- Attention control is mainly operationalized as the ability to rapidly shift attention to different levels of linguistic information

- This needs to be measured in a specific way

PREVIOUS MEASURES OF ATTENTION CONTROL

- Mostly not directly language-related
 - Trail Making Task

"TMT involves visual search, visual perceptual ability, and motor speed for both Trails A and Trails B; Trail B additionally requires task shifting, planning, working memory, attention, and inhibition (Wodka et al., 2008)" (Bialystok, 2010:95)

- Switching paradigms (e.g. Rogers & Monsell, 1995)
- Dimensional Change Card Sort Task (Frye, Zelazo & Palfai, 1995; Bialystok & Martin 2004)
- Wisconsin Card Sorting Task (Heaton 1981)
- Metalinguistic categorization task (Segalowitz & Freed, 2004)

OUR TASK: SPEEDED CATEGORY DECISION

- New method to measure attentional control in L1
 - auditory analog of the Dimensional Change Card Sort Task (Bialystok & Martin 2004).
- Participants must inhibit attention to a dimension that was previously selected, and refocus on a different aspect of the same stimulus
- Requires two different types of information to be extracted from the stimulus: lexical vs. indexical.

ATTENTION CONTROL (IN L1)

Shift attention to a specified dimension of the auditory stimuli (e.g. "Male Voice?" or "Word?") (stimuli vary in voice and lexical status)

– Measure:

accuracy and latency on Repeat (baseline) vs. Shift conditions

EXAMPLE: 4 TRIALS

Male voice?

Word?

Word?

Male voice?

RESULTS

Participants did the same task at T1 and T3 No significant difference between Times => Collapsed means across times

ATTENTION CONTROL: SHIFT COST

"repeat" (baseline) vs. "shift" condition

INDIVIDUAL VARIATION

Fluency and Attention Control

LARGE VARIATION IN REDUCTION OF SILENT PAUSES

Negative: fewer seconds, more frequent silent pauses Positive: more seconds, less frequent silent pauses No relation between Rate of Speech gains and reduction of filled pauses

GAIN IN RATE OF SPEECH (DIFFERENCE SCORE T3-T1)

GAIN IN RATE OF SPEECH (DIFFERENCE SCORE T3-T1)

HIGHER SHIFT COST CORRELATES WITH OVERALL MORE FREQUENT SILENT PAUSES

[T2 nb of seconds between silent pause - T1 nb of seconds between silent pauses] Positive = fewer silent pauses; Negative = more silent pauses

Higher shift cost is related to more hesitations (shorter distance, fewer seconds between pauses)

CORRELATIONS

			Distance	D	istance			
		Distance	between	b	etween	Distance	Distance	
		between short	Intermediate	ate Intermediate		between	between	Gain in Rate
		silent pauses	silent pauses silent pauses		filled pauses	filled pauses	of Speech	
		(T2-T1)	(T2-T1)	(T2-T1)	(T3-T1)	(T2-T1)	(T3-T1)
Mean Shift	Pearson	.208	351	$ \rangle$	104	234	205	.119
Cost (T1T2)	Correlation							
	Sig. (1-tailed)	.159	.043	3	.310	.130	.163	.286
	N	25	25	5	25	25	25	25
Mean Shift	Pearson	.200	385		085	247	223	.073
Cost ratio	Correlation							
(T1T2)	Sig. (1-tailed)	.169	.029)	.343	.117	.143	.364
	N	25	25	5	25	25	25	25
Mean RT	Pearson Correlation	.002	188		.098	190	147	.435 [*]
Repeat	Sig. (1-tailed)	.497	.184	ŀ	.321	.181	.241	.015
	N	25	25	5	25	25	25	25
Mean RT	Pearson Correlation	.110	365		.039	305	249	.479 ^{**}
Shift	Sig. (1-tailed)	.300	.036		.426	.069	.115	.008
	N	25	25	5	25	25	25	25

Higher RT is related to more hesitations (shorter distance, fewer seconds between pauses)

DISCUSSION & CONCLUSION

MAJOR FINDINGS

• **PROFICIENCY**

– IM learners improved more than AH learners

• FLUENCY

- Fluency gains were visible for all IM learners
 - Rate of Speech and Hesitations

ATTENTION

- Our task is successful at measuring attention control
- Stable over time
- But correlations with fluency measures were not the strongest

CONCLUSION

Correlations

 Our findings expand previous findings about the relationship of attention control and L2 fluency (Mora and Gilabert, 2012)

• Attention control tasks must be understood better

- Task effects
- Speech-specific attention vs. general attention?
- More work to be done to understand its relationship with various aspects of L2 acquisition
 - Fluency vs. Proficiency
 - Phonology / pronunciation
 - Production vs. Perception

THANK YOU!